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Agenda for this session

I Part 1: Intro
I Fundamentals of deep learning

I Part 2: Capturing spatial patterns (Convolutional neural
networks)

I Example: Crowd flow modeling using CNN

I Part 3: Capturing temporal patterns (Recurrent neural
networks)

I RNN and LSTM
I Example: Trajectory modeling using LSTM

I Part 4: Representation learning
I Embeddings
I LINE embedding
I Example: Spatio-temporal region embeddings

I Part 5: Transfer learning
I Example: Cross-city transfer learning



Part 1: Intro



What is going on in Urban Computing research?

How is the Urban Computing research evolving?

I Spatial, time-series, spatio-temporal statistics
(auto-correlation function dates back to 1920s)

I Pattern mining and machine learning algorithms (2007-2017)
(Mobile phones, GPS sensors)

I Deep learning algorithms (2017-?)
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Why is there an interest to use it for spatio-temporal data

I Performance in various data analysis tasks for unstructured
data (image, sequential, graph)

I Spatio-temporal data is unstructured

I Feature extraction from raw data instead of hand-crafted
feature engineering

I Spatio-temporal data is high-dimensional and featureless

I New solutions for handing unlabeled data
I Spatio-temporal is difficult to label

I Learning features over data from multiple modalities
I Data collected from heterogeneous sensors and data

sources

At the same time they are black box algorithms (Big limitation)
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A perceptron (neuron)

The building block of neural networks
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A perceptron (neuron)
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A neural network is created by repeating this simple pattern



Neural networks with multiple hidden layers
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Where is the power coming from?

I Embedding non-linearity: Through introducing nonlinearity
we are able to find any form of real-world nonlinear pattern

I The activation function allows embedding non-linearity
I Examples

I Sigmoid g(z) = σ(z) = 1
1+e(−z)

I Relu
I Hyperbolic tangent
I Sigmoid function
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Image source: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6



Objective function

The goal is finding a network that minimizes loss on an objective
function

I Find a set of parameters that help us minimize the loss
I θ∗ = argminθ

1
n

∑n
i=1 L(f (x i )|θ), y i )



Loss optimization

I Gradient descent:

I Considers how the loss is changing with respect to each weight
→ gradient

I Back-propagation:
I Calculates a gradient that is needed in the calculation of the

weights to be used in the network

I Batch gradient descent:
I Gradient descent in mini-batches
I Allows parallelizing the work



Different types of neural networks

I Multilayer perceptron

I Convolutional neural networks

I Recurrent neural networks

I Auto-encoders

I Generative adversarial networks



Part 2: Capturing spatial patterns (Convolutional neural networks)



Convolutional neural networks

I Originally made for image data represented in 3D matrices
I Manual feature extraction used previously in image

classification considers:
I Manually designing features to detect edges, shapes, textures,

etc.
I Dealing with problems such as (lighting, rotation, etc)

I Convolutional neural networks allow extraction of these
features hierarchically



Hierarchical feature extraction with convolutional neural
networks
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Convolution

I Convolution layer is the main building block of a convolutional
neural network

I The convolution layer is composed of independent filters that
are convolved with data
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Convolution

Convolution operation allows learning features in small pixel
regions

I Filters are defined based on weights to detect local patterns

I Many filters are used to extract different patterns



General architecture

I The goal is learning the weights on the filters from data

I Convolution: Applying filters
I Nonlinearity: Activation function
I Pooling: Reduce the size of the feature map
I Fully connected layer: in classification settings it allows to

calculate the class scores

Input image
Convolution

Maxpooling Fully connected layer

Figure: Feature learning and classification pipeline



Example: using CNNs for modeling spatial dependencies



Problem

Forecasting the crowd flows using mobility trajectories

I Inflow

I Outflow

!" !# !$
Inflow

Outflow

I Given a tensor {Xi |t ∈ [1, n − 1]}, X ∈ R2×I×J showing the
inflow and outflow to cells of a grid of size I × J

I We are interested in Forecasting the flow of crowds in Xn



Things that we need to model

I Spatial dependencies: The inflow of a region is affected by
outflows of nearby regions as well as distant regions.

I Temporal dependencies: (near and far)
I Near past: A traffic congestion occurring at 8am will affect

that of 9am.
I Periodicity: Traffic conditions during morning rush hours

may be similar on consecutive workdays, repeating every 24
hours

I Trend: Morning rush hours may gradually happen later as
winter comes. When the temperature gradually drops and the
sun rises later in the day, people get up later and later.

I External influence. e.g. Weather conditions, events

What solutions did we learn before so far to address these? (Spatial
weight matrices, ARIMA, SARIMA, Autoregressive models....)
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ST-ResNet uses residual networks to model these properties
[ZZQ17]



How convolution can help?

I A city usually has many regions with different distances

I Spatial correlation in nearby regions: The flow of crowds
in nearby regions may affect each other, which can be
effectively handled by the convolutional neural network

I Spatial correlation in distant regions: subway systems and
highways connect two locations with a far distance, leading
correlation over distance.

I A CNN with many layers can capture the spatial dependency
of any region



Capturing temporal dependence

How to capture temporal dependence?



ST-ResNet
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ST-ResNet

Residual learning is technique for having numerous convolutional
layers.

I Inflow and outflow is turned into a into a 2-channel matrix

I Time axis is turned into three fragments, denoting recent
time, near history and distant history.

I The flow matrices in each time fragment are fed into the first
three components separately to model the aforementioned
three temporal properties: closeness, period and trend

I The first three components share the same network structure
with a convolutional neural network followed by a Residual
Unit sequence.

I In the external component some features from external
datasets, such as weather conditions and events are fed into a
two-layer fully-connected layer



Part 3: Capturing temporal patterns (Recurrent neural networks)



Recurrent neural networks (RNNs)

I A class of dynamic models (Like HMM, Dynamic Bayesian
Networks)

I Connections between nodes form a directed graph along a
temporal sequence

I Allows capturing temporal dynamic behavior
I RNNs can remember previous states to process sequences of

inputs



RNNs
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I ht contains information from all previous past states
I ht = f (ht−1, xt)

I We learn the weights through back propagation
I We have one loss at every timestamp



RNNs

I Vanishing gradient problem: weight receives an update
proportional to the partial derivative of the error function with
respect to the current weight in each iteration of training.
The gradient will become very small, preventing the weight
from changing its value.

I Solution: using more complex units (gated units, LSTMs)



LSTM

I Input, output, forget gates, cell state

I Forget irrelevant parts of previous state

I Selectively update cell state values

I Output certain parts of cell state
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Example: Deep Generative Models of Urban Mobility [LYF+17]



Problem

I Given: Call detail records
I Goal: Creating a traffic simulator

I Synthetic daily travel itineraries
I Traffic volumes that can be compared against real counts from

highway sensors and transit agencies data
I Estimating range of metrics for a given scenario including its

environmental impact
I Aggregated travel demand volumes to evaluate a specific policy



General simulation framework

7

7
Image source: [LYF+17]



General simulation framework
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Steps

I Anonymized CDR data is pre-processed to a sequence of stay
location clusters corresponding to distinct unlabeled activities

I Features of activity, such as the start time, duration, location
features, and the context of the activity (whether this activity
happens during a home-based trip, work-based trip, or a
commute trip) are extracted

I IO-HMMs are used to label each activity and uncover the
activity patterns

I Labeled activities sequences are sent to a generative recurrent
neural network with LSTM cells for training

I The trained model is able to learn explicit location choice with
mixture density outputs for each type of activity, and thus
capable of generating realistic activity chains



Evaluation
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Part 4: Representation learning



Feature extraction

I Many type of data such as words of text, do not have a
natural vector representation.

I Previously dealing with high-dimensional data using machine
learning approaches relied on user-defined heuristics to extract
features from data

I Graph features (e.g., degree statistics or kernel functions)
I Image features
I Text features

I Deep learning provides potentials for automatic feature
extraction

I Automatically learn to encode high dimensional data (graph,
text, images to low-dimensional embeddings)



What is an embedding?

I Given high dimensional data the goal is to encode data to
low-dimensional vectors that summarize the important
properties of data

Apple
queen

king
Orange



What is an embedding?

I An embedding is a low-dimensional representation of
high-dimensional vectors

I Individual dimensions of the new representation space do not
have a meaning

I The patterns of locations and distances between vectors is the
embedding space important

I Examples:
I Embeddings for words: Word2Vec
I Embeddings for graph: LINE



Modeling data in form of graphs

Graphs provide a flexible and general data structure for variety of
applications using urban scale spatio-temporal data

I LBSN data

I Road network data



Let’s see how we can learn embeddings for graphs



Factorization: Latent factor models

An example of how we did it before ...

I Assume that we can approximate the rating matrix R as a
product of U and PT

p1 p2 p3 p4
u1 4.5 2
u2 4.0 3.5
u3 5.0 2.0
u4 3.5 4.0 1.0

R
=

(k = 2) factors
u1 1.2 0.8
u2 1.4 0.9
u3 1.5 1.0
u4 1.2 0.8

U
×

p1 p2 p3 p4
1.5 1.2 1.0 0.8
1.7 0.6 1.1 0.4

PT



The general Encoder-decoder approach

Node label
e.g. community function

DecodeEncode

I The encoder: maps nodes of a graph to embeddings

I The decoder: maps the embeddings to structural information
about the graph (neighborhood level information, or a
community class label).[HYL17]



Steps in creating graph embeddings (graph embeddings)

1. Pairwise proximity function: measures the connected-ness
of nodes

2. Encoder function: generates node embeddings

3. Decoder function: reconstructs pairwise proximity values
from the generated embeddings.

4. Loss function: measures the quality of the pairwise
reconstructions [HYL17]



LINE: Large Scale Information Networks Embedding [TQW+15]



Node embedding

I Automatically creating features (embeddings) for different
types of graphs

I Clear objective function
I loss function is defined based on first and second order

proximity



First-order proximity

Proximity between nodes based on the local pairwise proximity



Second-order proximity

I Proximity between neighbors of a node

I The general notion of the second-order proximity can be
interpreted as nodes with shared neighbors being likely to be
similar



Optimization

Goal: Embeddings should preserve both the
first-order and second-order proximities

I Loss on the first order proximity

I Loss on the second order proximity

Two objective functions (O1, O2)



Loss on the first order proximity

I Joint distribution of first-order proximity
I p1(vi , vj) = 1

1+exp(−uT
i .uj )

(ui and uj are low dimensional vector

representation)

I Empirical distribution of first-order proximity (wij is the
weight of edges between nodes)

I p̂1(vi , vj) =
wij∑

i,j∈E wij

I Optimize the loss based on the distance between two
distributions (joint probability and empirical probability)

I O1 = d(p̂1(., .), p1(., .))



Loss on the second order proximity

I Joint distribution of neighborhood structure (defined on the
directed edge i → j)

I p2(vi |vj) =
exp(uT

j /ui )∑|V |
k=1 exp(u

T
k .ui )

wik

I Empirical distribution of neighborhood structure defined on
the directed edge i → j (di is the out-degree of node vi )

I p̂2(vi |vj) =
wij

di
I where Ni is the set of out neighbors of node i

I Optimize the loss based on the distance between two
distributions (joint probability and empirical probability)

I O2 = d(p̂2(., .), p2(., .))



Example: Using LINE for representing regions



Given a large set of spatio-temporal trajectories, how can you use
graph embeddings?



Region representation learning via Mobility flow [WL17]

I Goal: is to learn vector representations for regions using
mobility data (e.g. taxi trajectories) and later use the
representations in different modeling application

I LINE-based proximities:
I First order proximity: if there is a large volume of flow from

region x to region y
I Second order proximity: if there is a flow from x and y to

similar regions



Generalized inference model

Using embedding in a general inference model

I Infer a regional property (i.e. crime rate, personal income, and
real estate price) from observed auxiliary urban features.

I Learning region embedding from mobility flow data to
enhance the following inference model
yi = α.Xi + β

∑
i∈Ni

w(i , j).yj + γ

I yi is the target value
I α, β, γ are parameters of the regression model
I wij are weights coming from embeddings
I Xi auxiliary features



Graph embeddings for spatio-temporal data

I Can be captured in a graph embedding:

I First order proximity
I Second order proximity

I Can’t be capture in a graph embedding:
I Spatial structures
I Temporal structures



Region embedding method

Region embedding method:

I Flow graph: a layered graph with a set of time enhanced
vertices. The edge weight are volumes of mobility between
two vertices

I Spatial graph: With vertices exactly the same as that of flow
graph. The edge set only contains edges connecting two
vertices from consecutive layers. The edge weights represent
the spatial similarity of two regions.



Region embedding
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Validating region embeddings

Using the embedding in inference tasks

I Crime data

I House price data

I ...



Part 5: Transfer learning



Transfer learning

I Supervised learning models requires access to label

I When using neural networks for supervised learning we would
need even more labels

I Transfer learning methods aim at transfering the knowledge
gained while solving one problem and applying use this
knowledge in a different solving a different problem



Transfer learning and deep learning

I Pre-training and fine-tuning

I Domain adaptation

I Domain confusion

I Multi-task learning

I One-shot learning

I Zero-shot learning



Transfer learning for Urban Computing

Example: Cross-city Transfer Learning for Deep Spatio-temporal
Prediction [GLZ+18]



Goal

I We are interested in prediction of air quality, traffic flows, and
other urban parameters

I In some cities we do not have means to collect data that can
be used for extracting a model

I How can we transfer the knowledge we can get from the
data-rich cities to data-scarce cities?



Problem

I Given:
I Urban image time-series: ID = {ir ,t | ∈ D}

I where D is the grid of the city, r is a regions in city
I weather condition, air quality, crowd flow,

I Service spatio-temporal data: SD = {sr ,t |r ∈ D}
I Source city D ′: Rich in terms of service
I Target city D: With little service data in
I Different temporal data durations in different cities

I Goal:
I Learn a function model for predicting the service data in the

target city data over time
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Transferring the knowledge across cities

10

Figure: Pre-training a model in the source city
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Image source: [GLZ+18]



Transferring the model to the target city

I Pre-trained model on the source city (we have the weights of
the neural work)

I Refine the weights of the pertained model θ on the target city
I Objective 1: Reducing the error on prediction of service data

on the target city: minθ =
∑
||Ỹt − Yt ||2

I Objective 2: Reducing the representation divergence between
matched region in the target city xr ,t and source city xr∗,t
based on a correlation coefficient



Baselines

I ARIMA

I DeepST

I ST-RestNet



Lessons learned

I The strength of neural networks lies in automatic feature
extraction and encoding non-linearity

I There are already neural network models for extracting spatial
and temporal feature from data automatically

I These models still need to be adapted to spatio-temporal data
for urban applications

I Representations learning is a suitable technique that can
create generic (spatio-temporal) features from data usable
for different modeling tasks

I We need to think about how to define the right objective
function for creating representations

I Transfer learning that provide the possibility of transferring
the knowledge from data-rich urban areas to data-scarce
areas
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