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Third Session: Urban Computing - Processing spatio–temporal
data



Agenda for this session

I Part 1: Preliminaries
I What is spatio-temporal data?
I How do we represent spatio-temporal data?

I Part 2: Methods for processing spatio-temporal data
I Spatio-temporal auto-regressive

I Part 3: Methods for processing trajectory data
I Trajectory pre-processing
I Trajectory pattern mining (next sessions)



Part 1: Preliminaries



Examples

Real-world processes being studied in many domains are inherently
spatio-temporal in nature including:

I Climate science

I Neuroscience

I Social sciences

I Transportation

I Earth sciences



Example

Figure: Example spatio-temporal data, NO2 emissions



Essence of spatio-temporal data

I Temporal and spatial auto-correlation: Nearby values in
space and time tend to be alike

I Spatial heterogeneity: as we move away from a central
point similarities decrease

I Temporal non-stationarity: as time passes similarities
decrease

I Multiple-scale patterns: Daily (temporal scale 1) and
seasonal (temporal scale 2) patterns within a patch of land
(spatial scale 1) within a landscape (spatial scale 2)



What are spatio-temporal datasets

I Spatio-temporal databases are an extension of spatial
databases

I A spatio-temporal database embodies spatial, temporal, and
spatio-temporal database concepts:

I Geometry changing over time
I Location of objects moving over invariant geometry



How can we deal with spatio-temporal data?

I How did we deal with spatial data?

I Can we extend those methods to spatio-temporal data?



Spatio-temporal phenomena

1. Spatio-temporal processes: variables which are dependent
on space and time ←

I Weather
I Population

2. Moving object: an object moving over space
I People’s trajectories
I Cars’ trajectories



Spatio-temporal processes

Correspondence of spatial and spatio-temporal processes:

Spatial Spatio-temporal

Geo-statistical Spatio-temporal point referenced

Spatial point Spatio-temporal event

Lattice Spatio-temporal raster



Spatio-temporal processes

Correspondence of spatial and spatio-temporal processes:

Spatial Spatio-temporal

Geo-statistical Spatio-temporal point referenced
Spatial point Spatio-temporal event

Lattice Spatio-temporal raster



Spatio-temporal point reference data

I Measurements of a continuous spatio-temporal field over a set
of fixed reference points in space and time

I Meteorological variables
I Temperature
I Humidity



Spatio-temporal processes

Correspondence of spatial and spatio-temporal processes:

Spatial Spatio-temporal

Geo-statistical Spatio-temporal point referenced

Spatial point Spatio-temporal event
Lattice Spatio-temporal raster



Spatio-temporal event processes

I Random points in space and time denoting where and when
the event occurred

I Crime event
I Road accidents



Spatio-temporal processes

Correspondence of spatial and spatio-temporal processes:

Spatial Spatio-temporal

Geo-statistical Spatio-temporal point referenced

Spatial point Spatio-temporal event

Lattice Spatio-temporal raster



Spatio-temporal raster processes

I Aggregated values over discrete regions of space and periods
of time

I Demographic information
I Population increase in a city over a year



Spatio-temporal phenomena

1. Spatio-temporal processes: variables which are dependent
on space and time

I Weather
I Population

2. Moving object: an object moving over space ←
I People’s trajectories
I Cars’ trajectories



Moving objects

I Trajectories: Multi-dimensional sequences containing a
temporally ordered list of locations visited by the moving
object

I What can we do by analysis of trajectory data?
I Studying moving objects: Can we cluster a collection of

trajectories into a small set of representative groups?
I Studying locations: Are there frequent sequences of locations

within the trajectories that are traversed by multiple moving
bodies?



Data types (processes) and data instances

Spatio-temporal 
event Trajectories Spatio-temporal 

point reference 
Spatio-temporal 

raster

Points Lines Time-series Spatial raster Spatio-temporal 
raster

Data type

Data 
Instance

Figure: Spatio-temporal data instances and data types that can be used
to represent them to algorithms as data instances



Part 2: Methods for processing spatio-temporal data



Spatio-temporal statistics

Many statistical methods designed for spatial data can be extended
to the spatio-temporal data:

I Spatio-temporal auto-correlation

I Space-time forecasting (auto-regressive models)

I Spatio-temporal kriging (interpolation)

I Spatio-temporal k-function (e.g. k-nearest neighbors)

I ...



Auto-regressive models for spatio-temporal data

Yn , Yt are vectors of dependent variables of size n. φ, λ, ρ are
model parameters. c is a constant. ε represents the noise term.
Wn is the spatial weights matrix

I Auto-regressive
I Yt = c +

∑p
i=1 φτYt−τ + εt

I Spatial Auto-Regressive model (SAR)
I Yn = c + λWnYn + εn,
I WnYn is referred to as the spatial lag term in the models
I How we use Wn determines global and local effect

I Space-Time Autoregressive model (STAR)
I Yn,t = c +

∑p
τ=1 φτWnYn,t−τ + εn,t

Exercise: try to derive the equivalent if a spatio-temporal moving
average model



Part 3: Methods for processing moving object data
(spatio-temporal trajectories)



How does trajectory data look like?



Trajectory data, moving object data

I Lagrangian motion data: Allows collecting data of the
movement of one entity globally

I GPS

I Eulerian motion data: Allows collecting data of movement
of many entities in restricted spaces

I Wifi scanning
I RFID
I Video surveillance

I Something in the middle:
I Location-based social networks



What are different ways we can look at trajectory data?

We can query a trajectory dataset in different ways. Thus, we can
study the data in different ways.

Query type Location Entity time
1 Fixed Fixed Variable
2 Fixed Variable Variable
3 Variable Fixed Variable
4 Variable Variable Variable

Table: Different ways of looking at trajectory data



Patterns to extract from moving object data

Each type of query allows extracting a different type of pattern:
I Individual

I Frequent
I Periodic
I Outliers

I Social
I Flock
I Leadership
I Convergence
I Encounter

I Spatial
I Spatial interactions
I Spatial functions



Dealing with trajectory data

I Trajectory preprocessing (This session)

I Pattern mining (Next sessions)



Pre-processing trajectory data

I In which ways can we pre-process trajectory data?

I Reduce the size of data → Trajectory compression
I Remove noise → Trajectory filtering
I Create workable instances → Trajectory segmentation



Trajectory compression

I Goal: reducing the dimensionality of the trajectory

I Task: Reducing the size of trajectory while preserving the
precision

I Good for:
I Efficiency (computationally) in pattern mining
I Efficiency (energy consumption) in data collection procedure:

the location of an object can be reported to the server when
the precision reduces according to an error threshold.

I Essence: finding appropriate techniques and error measures
for use in algorithms and performance evaluation.



Techniques for trajectory compression

I Uniform sampling

I Douglas-Peuker ←
I TD-TR

I Window-based algorithms (sliding window, open window, etc.)

I ...



Douglas-Peuker, Also known as Ramer-Douglas-Peucker

I Widely used in cartography and computer graphics

I Tries to estimate the original trajectory with one that has
smaller number of points

I Iterative end-point fit algorithm
I Recursively divides the line and approximates based on an

error threshold
I The optimization problem is formulated such that it

minimizes the area between the original function and the
approximate line segments

I Douglas-Peuker does not necessarily find a globally optimal
solution



Douglas-Peuker approach

Figure: Step 1

Figure: Step 2



Trajectory compression

Error metrics used for implementing trajectory compression:
I Euclidean distance: perpendicular distance between a point

and a line
I Only takes into account the geometric aspect of the trajectory

representation without considering the temporal characteristics

I Time synchronized euclidean distance: Is a time-distance
ratio metric

I SED(A,B,C ) =
√

(x ′B − xB)2 + (y ′B − yB)2

I where x ′B = xA + xc−xA
tc−tA (tB − tA) and y ′B = yA + yc−yA

tc−tA (tB − tA)



Trajectory compression: Mode of operation

I Batch:
I Leads to high quality approximation due to access to full

trajectories
I It is not practical in many applications

I Online:
I Typically limits the scope within a window
I Certain trajectory properties can be preserved based on the

application’s needs
I Intelligently select some negligible location points to retain a

satisfactory approximated trajectory



Trajectory compression: Sliding window algorithm

I Main idea: Fitting the location points in a growing sliding
window with a valid line segment

I Continues to grow the sliding window until the approximation
error exceeds some threshold

Figure: Sliding window algorithm



Trajectory filtering



Trajectory filtering

I Spatial trajectories are often noisy because of the sensing
technology

I Filtering techniques are used to smooth the noise and
potentially decrease the error in the measurements

I This noise is different from the ε we had in the autoregressive
models

I Trajectory model:
I zi = xi + vi → Measurement
I xi = (xi , yi ) → True position
I vi ∈ N(0,R) → Noise



Trajectory filtering

Figure: Raw noisy
data, Z

Figure: True position
X

Figure: Estimated
position X̂



Techniques for trajectory filtering

I Median filter

I Mean filter

I Kalman filter

I Particle filter

I ...



Filtering techniques

I Mean filter
I x̂i = 1

n

∑i
j=i−n+1 zj

I Median filter
I x̂i = median{zi−n+1, zi−n+2, ..., zi−1, zi}



Mean and Median Filter

Figure: The result of applying the mean and the median filters 1

1
Image source: [ZZ11]



Properties of filters

I Mean filter:
I Causal → depends on the values in the past
I If the trajectory changes suddenly the effect on the trajectory

is only gradually seen → It introduces a lag
I Sensitive to outliers

I Median filter:
I Not sensitive to outliers



Median and mean filters

I Advantage:
I Simple and effective in smoothing trajectories

I Disadvantages:
I Both suffer from the lag problem
I They are not designed to help estimate higher order variables

like speed and acceleration
I In fact they might reduce the estimation accuracy of higher

order variables



Advanced filters

I Advanced techniques that reduce lag and estimate the
trajectory based on more than just location information

I State-space models:
I Kalman filter
I Particle filter



State and observations

I States: Things that you cannot measure directly but are
interested in estimating

I Examples:
I The true location
I The true speed

I Observations: Noisy measurements from sensors
I Examples

I GPS fixes
I Acceleration



Kalman Filter

I First use: estimating trajectory of a space craft to the moon
and back (There is no GPS trajectory in the space!)

I General idea: estimating the state variables from noisy
observations by incorporating the physical domain knowledge
→ Optimal estimation algorithm

I true location
I speed
I acceleration

I Applications:
I Error correction
I Data fusion: When measurements are available from various

sensors but mixed with noise



Kalman filter

I Formulation of Kalman filter makes a distinction between
what is measured as observations and what is estimated as
states

I Measurement model: How measurements are related to the
states

I Dynamics model: How previous states are related to future
states



Measurement model

I Kalman filter gives estimates for the state vector xi
I Hi is the measurement matrix translating between xi and zi

and matching the dimensionality of zi and vi



Dynamics model

I Approximates how the state vector xi changes with time

I wi is the Gaussian noise term



Kalman filter

A two-step algorithm that

I Step 1: Using the dynamics model extrapolates the current
state to the next state

I Step 2: Incorporates the current measurement to make new
estimates (weighted average of predicted state and the
measurement)

2
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image source: [Lab15]



Kalman filter

Advantages:

I No lag effect

I Richer state vector (velocity and location)

I It can incorporate more physical knowledge explaining how
speed, time and displacement are related to each other

I It can be used to incorporate input from other sensors

I It can be used to incorporate uncertainty (using a covariance
matrix)



Kalman filter

Limitations:

I To initialize the filter we need to have assumptions about the
initial state and the uncertainty of the initial state

I The requirement is having a linear dynamic model
I It uses continuous variables without having a way to represent

discrete variables like:
I The mode of transportation
I Activity



Particle filter

I Also makes disctinction between measurement and
dynamics model

I To formulate these models it does not limit itself to physical
movement parameters

I Has less strict assumptions about the linearity of equations
and the noise model

I More general and less efficient



Particle filter

I Measurement model:
I A conditional Gaussian distribution with covariance matrix Ri

I p(zi |xi ) = N((xi , yi ),Ri ),

I Dynamics model:
I Probability distribution p(xi |xi−1)
I It samples from the dynamics models
I Instead of formalizing it we generate random samples of xi+1

from xi
I Each generated sample is referred to as a particle

I Computation time and accuracy both depend on the number
of particles



Particle filter
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image source: [Lab15]
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Trajectory segmentation



Stops and Moves

I Trajectories are considered as a collection of stops and moves
[PBKA08]

I For many applications semantics of points in trajectories are
more important than shapes

I Interest regions
I Stay points
I Activity regions
I The path between two points of interest



Stops and moves

Figure: Stops and moves in a trajectory4

4
Image source: [PBKA08]



Not only a spatial clustering task

I Challenge:
I We cannot only look at where point are clustered spatially
I We want to find places that one trajectory has stopped but not

only the overlap of a lot of trajectories
I We want to find meaningful stops where a lot of trajectories

stop and not any random stop

5
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Image source: [PBKA08]



To solve this problem using DBSCAN

I Density-based spatial clustering of applications with noise
(DBSCAN)

I Given a set of points in some space, it groups together points
that are closely packed together

I Parameters:
I Eps (epsilon) (distance threshold between two points to be

neighbors)
I MinPts (the minimum number of points required to form a

dense region)

I Properties of a cluster:
I All points within the cluster are mutually density-connected.
I If a point is density-reachable from some point of the cluster,

it is part of the cluster as well.

I We have to redefine parameters (MinPts, Eps) for clustering
regions of interest



Modified DBSCAN for extracting regions of interest

I First identify candidate stops by redefining MinPts
I A candidate stop is a closed polygon
I For a candidate stop we also define a minimum stay duration

(equivalent of MinPts)



Eps-linear neighborhood of a point

I Let {p0, p1, ....pn} be points on a trajectory p = (x , y , t)

I Eps(pk) is a set of points such that:



Lessons learned

I Spatio-temporal processes:
I Extension of spatial process (geo-statistic, point, lattice

processes)
I Spatio-temporal auto-regressive as a combination of

auto-regressive and spatial auto-regressive

I Moving objects:
I Technology allows collection of trajectory data of moving

object data in different ways:
I Lagrangian: One individual visiting many locations
I Eulerian: Many individuals passing one location

I Different patterns can be extracted from data based on how
we query the ID of moving objects and locations



Lessons learned (continued)

I Trajectory pre-processing:
I Trajectory compression: summarize the trajectory data to

key points, save space, save communication, efficient
processing

I Douglas-peuker (batch mode)
I Window-based (online)

I Trajectory filtering: GPS sensors produce noisy and only
approximate location data

I Mean, Median filters: simple, lag problem
I State-space filters: defining a measurement (measurement,

state relation) and dynamics model (past state, future state
relation)

I Kalman filter (physics laws, inflexible), Particle filter (flexible,
slow)

I Trajectory segmentation: Extracting region of interest by
extending DBSCAN clustering



End of theory!
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