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Second Session: Urban Computing - Processing Time-series Data



Agenda for this session

I Part 1: Preliminaries on time-series data
I How does time-series data look like?
I How do we represent time-series data to algorithms?

I Part 2: Techniques for processing time-series data
I Forecasting
I Classification

I Part 3: Assignment
I Put into practice some of the techniques learned today
I Apply on Geo-life data



Part 1: Preliminaries on time-series data



Why do we care about time-series data

I Time-series data are ubiquitous...
I What types of data do we have in form of time-series for

Urban Computing research?
I Temperature
I Humidity
I Number of people, cars passing a road
I Price of houses
I Sensor measurements



I What can you do with this data?

I How do you achieve that using an available machine learning
algorithm?

I How do we represent time-series data to available algorithms?



Peculiarities of time-series

Why analysis of time-series data is challenging? What qualities
should algorithms for analysis of time-series data have?



Dimensionality?

history_export_2019-02-11T14_41_41

Year Month Day Hour Minute Temperature  [2 m above gnd] Total Precipitation (high resolution)  [sfc] Wind Speed  [10 m above gnd] Wind Direction  [10 m above gnd]

2019-2-4 2 4 0 0 1.01 0 14.48 214.88

2 4 1 0 0.72 0 16.58 207.12

2 4 2 0 0.65 0 18.4 210.58

2 4 3 0 1.28 0 20.68 211.48

2 4 4 0 1.6 0 21.42 204.84

2 4 5 0 2.08 0 23.51 205.39

2 4 6 0 2.38 0 24.51 209.95

2 4 7 0 2.28 0.1 24.31 207.32

2 4 8 0 2.17 0.1 25.05 198.43

2 4 9 0 2.24 0.2 27.56 199.86

2 4 10 0 2.28 0.5 28.41 202.34

2 4 11 0 2.15 0.9 31.43 200.1

2 4 12 0 1.36 1.1 33.28 195.69

2 4 13 0 1.31 0.9 33.37 200.19

2 4 14 0 0.91 1.4 38.43 195.21

2 4 15 0 1.95 0.7 43.86 200.67

2 4 16 0 2.57 0.2 44.76 206.77

2 4 17 0 2.79 0.2 44.76 211.52

2 4 18 0 2.91 0.2 41.48 216.17

2 4 19 0 2.97 0.2 38 221.54

2 4 20 0 3.05 0.2 34.37 226.27

2 4 21 0 3.37 0.2 32.84 232.13

2 4 22 0 3.54 0.1 31.32 232.47

2 4 23 0 3.77 0 29.96 234.78

2019-2-5 2 5 0 0 3.97 0 25.77 241.65

2 5 1 0 4.13 0.1 25.32 240.15

2 5 2 0 4.31 0.1 22.67 237.32

2 5 3 0 4.4 0.1 20.29 242.53

2 5 4 0 4.25 0 18.85 241.48

2 5 5 0 4.13 0.1 16.28 234.9

2 5 6 0 4.2 0 15.12 231.77

2 5 7 0 4.39 0 15.63 231.55

2 5 8 0 4.23 0 14.84 230.91

2 5 9 0 4.21 0 14.51 226.01

2 5 10 0 4.68 0 16.06 222.27

2 5 11 0 5.31 0 16.56 222.36

2 5 12 0 5.48 0 16.81 223.26

2 5 13 0 5.89 0 14.19 234.29

2 5 14 0 6.1 0 14 226.04

2 5 15 0 6.05 0 13.09 211.5

2 5 16 0 6.08 0 14.24 200.73

2 5 17 0 6.38 0 15.26 199.29

2 5 18 0 6.32 0 15.28 195.02

2 5 19 0 6.08 0 15.33 189.46

2 5 20 0 5.66 0 16.6 183.73

2 5 21 0 5.5 0 16.24 176.19

2 5 22 0 4.69 0 18.72 178.9

2 5 23 0 4.2 0 18.53 187.82

2019-2-6 2 6 0 0 3.73 0 20.27 192.31

2 6 1 0 3.81 0 22.53 192.93

2 6 2 0 3.78 0 23.31 193.39

2 6 3 0 3.71 0 23.14 195.33

2 6 4 0 3.79 0 23.84 194.88

2 6 5 0 3.97 0 23.45 197.88

2 6 6 0 4.41 0.4 24.34 203.53

2 6 7 0 4.59 0.3 23.02 206.97

2 6 8 0 4.76 0.5 21.87 212.91

2 6 9 0 5.17 1 21.12 209.62

2 6 10 0 5.66 0.3 21.07 213.15

2 6 11 0 6.05 0.2 20.47 214.25

2 6 12 0 6.54 0.2 20.02 217.69

2 6 13 0 5.36 0.3 19.38 215.17

2 6 14 0 5.79 0.4 18.29 216.19

2 6 15 0 5.8 0.2 16.78 215.39

2 6 16 0 6.04 0.1 16.49 211.61

2 6 17 0 6.11 0.1 15.68 211.87

2 6 18 0 6.16 0 13.85 204.57

2 6 19 0 6.3 0 12.64 199.98

2 6 20 0 6.49 0 12.85 191.31

2 6 21 0 6.74 0 13.7 183.01

2 6 22 0 6.91 0.3 13.72 175.49

2 6 23 0 7.14 1.4 16.92 178.78

2019-2-7 2 7 0 0 7.27 1.6 15.94 173.52

2 7 1 0 7.31 2.3 19.6 187.39

2 7 2 0 7.85 1.3 22.38 191.13

2 7 3 0 8.67 0.2 29.08 211.33

2 7 4 0 8.86 0.1 25.86 218.78

2 7 5 0 8.66 0.6 20.59 216.47

2 7 6 0 8.4 0.4 20.66 247.46

2 7 7 0 7.81 0 29.56 235.92

2 7 8 0 7.54 0 38.16 238.11

2 7 9 0 7.17 0 44.43 236.57

2 7 10 0 7.31 0 48.94 243.81

2 7 11 0 6.75 0 51.7 250.05

2 7 12 0 6.82 0 53.97 252.53

2 7 13 0 8.34 0 50.56 242.89

2 7 14 0 8.39 0 50.07 243.07

2 7 15 0 8.33 0 47.5 244.41

2 7 16 0 8.16 0 44.81 246.32

2 7 17 0 7.9 0 42.18 248.47

2 7 18 0 7.4 0 37.97 248.3

2 7 19 0 7.23 0 35.7 248.09

2 7 20 0 7.01 0 33.23 247.05

2 7 21 0 6.91 0 32.21 244.87

2 7 22 0 6.74 0 32.39 245.71

2 7 23 0 6.69 0 32.24 246.3

2019-2-8 2 8 0 0 6.33 0 30.11 243.74

2 8 1 0 6.26 0 27.29 239.04

2 8 2 0 6.98 0 28.39 230.66

2 8 3 0 6.43 0.1 24.34 209.22

2 8 4 0 6.31 0.4 30.25 218.23

2 8 5 0 6.58 0.7 28.39 219.34

2 8 6 0 6.79 0.8 30.93 219.81

2 8 7 0 7.03 0.3 33.41 217.12

2 8 8 0 7.02 0.2 34.13 217.72

2 8 9 0 6.94 0.4 34.46 212.2

2 8 10 0 7.52 0.4 35.57 211.76

2 8 11 0 8.63 0.2 38.16 211.89

2 8 12 0 9.14 0 39.35 212.67

2 8 13 0 8.74 0 38.64 206.57

2 8 14 0 9.26 0 40.13 203.81

2 8 15 0 10.03 0 42.88 203.77

2 8 16 0 10.46 0 44.63 204.29

2 8 17 0 10.16 0 46.06 204.96

2 8 18 0 9.93 0.2 46.21 206.37

2 8 19 0 10 0.2 48.18 204.27

2 8 20 0 9.54 0.5 48.14 207.14
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Figure: Temperature in Leiden during the month of February so far 1

How many dimensions does the data have? Dimension is the
number of attributes required to explain every instance of data
Length over time defines the dimensions, → many (even infinite)
How would you use this data for predicting the temperature of the
following days?

1
data source: https://www.meteoblue.com



Peculiarities of time-series data

I High-dimensionality: We hope to reduce dimensionality by
finding a model Tempt = f (Temp(0...t−1))



Non-stationarity

I Non-stationarity: Data points have means, variances and
covariances that change over time

Figure: A non-stationary process 2

2
image source:http://berkeleyearth.org/2019-temperatures/



Peculiarities of time-series

I High-dimensionality: One instance has a lot of attributes
Tempt = f (Temp(0...t−1))

I Non-stationarity: Data points have means, variances and
covariances that change over time (related to concept drift)

I Single versus multi-variate time-series: Multiple sensors at
the same time, multiple high-dimensional data

I Distortions in time-series data: Missing values, noises, etc.



Who has so far developed methods, algorithms for
working with such data?

I Signal processing experts

I Statisticians



What can we do with such data?

I Predict values? (Better say forecast)

I Classify

I Find patterns, clusters, outliers

I Query

There are already algorithms designed for these tasks when dealing
with non-time-series data. The problem is finding a way to
represent time-series data to these algorithms.



Two approaches to deal with or represent time-series data

How do we represent time-series data in order to process it?
I Approach 1: Take it as it is.

I Represent it in time domain.
I Main issue: (Time-series data is high dimensional → very

difficult to work with)

I Approach 2: Represent it in a format that is more
understandable or easier to work with. Representation
techniques are designed to reduce the dimensionality of data
as much as possible.

I Frequency domain
I Time-frequency domain
I ...



Approach 2-example 1

Fourier transform

I What is Fourier transform?

I What does it do?

I Why is it useful (in math, in engineering, etc)?

I How can it be useful in Urban Computing?



What is Fourier transform?
The basic elements:
Fourier theory shows that all signals (periodic and non-periodic)
can be decomposed into a linear combination of sine waves defined
based on their amplitude (A), period ( 2π

ω ), and phase (φ)

Figure: A sine wave, basic element of Fourier transform

Asin(ωt + φ)



Fourier transform in one image

Figure: View of a signal in time and frequency domain3

3
source: http://www.nti-audio.com/portals/0/pic/news/FFT-Time-Frequency-View-540.png



Why is it useful?
The main intuition:

If the frequency domain view is sparse, we can leverage the
sparsity in different ways. (e.g. create new features for

classification, compress the signal, ...)

Figure: Different views of a signal and levels of sparsity. 4

Question we should seek to answer before using a frequency
domain transformation:

Does a transformation give us a sparser, thus, more
understandable representation?

4
Source: https://groups.csail.mit.edu/netmit/sFFT/slidesEric.pdf



Why is it useful?

Intuition behind frequency

I Change, speed of change: If change has a repetitive pattern
we see it better in the frequency domain

I How can we use frequency analysis in urban computing?
I Typically any phenomenon with a periodic pattern can be

captured in the frequency domain
I Periodicity in trajectory data (daily, weekly, seasonal, yearly

patterns)
I Activities with periodic patterns from accelerometer data

(walking, running, biking)
I Forecasting
I Compressing data



Approach 2-example 2

Wavelet transform

I Fourier analysis tells you what frequency components are
strong in a signal, but not where in the signal (frequency view)

I Wavelet tells you what frequency components and also where
they happen in a signal (time + frequency view)

I Useful for multi-resolution analysis



Time, Frequency, Frequency-time domains

5

I Lower frequency components take more time

I Higher frequency components take less time

5
http://www.cerm.unifi.it/EUcourse2001/Guntherlecturenotes.pdf



Example case

Figure: Assen sensor setup

We collected WiFi data from a city during TT festival.

I What would you do to see what happened in the city during
the festival?

I How would you automate the process of detecting things that
changed during the festival?



Multi-resolution analysis using Wavelets

Multiresolution analysis on visits of people to TT festival.

When and how strongly the number of visitors changed? 15
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Figure .10: Multiresolution analysis of number of vis-
itors in the city during a period of 10 days.
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Figure .11: Cross-correlation between people coming
and leaving stages.

The highest value in Figure .9, at three seconds is most likely caused by the Filter 3 on the scanners.
The filter only accepts detections if they are more than three seconds apart. Other interesting peaks are at
30, 60 and 120 seconds. These peaks are most likely caused by the frequency at which most mobile devices
send Probe Request frames. We also noticed this 30 second frequency, along with its multiples, on the
mobile device we used to initially test the scanners with.

The feature we described above are common for all the data sets we encountered. We believe that
having a WiFi tracking data set that contradicts these features could be a sign of errors.

4 Data analysis

After pre-processing and cleaning the data there still remains the question of how to extract useful infor-
mation from it. In this section, we give some examples of how such data can be used for this purpose. The
dataset that we have collected, contains probe requests from a period where normal activities in a city is
changed due to a festival. An example of the type of information that can be extracted is the change of
normal usage patterns of space during such an event.

One of the approaches that can be used to acquire a general understanding of how these changes occur
is performing multi-resolution analysis. Wavelet transformation is well-known for representing changes in a
time series in different resolutions. For our specific dataset, we use a Haar wavelet to see how the changes in
city mobility patterns are reflected in the number of people near scanners. When applied to the time series of
a specific period of time, the Haar Wavelet can represent the changes between two consecutive timestamps
of different duration (increase or decrease in the number of probes). Figure .10 represents the wavelet
coefficients over the above-mentioned period of time. Each bar in the figure represents the fluctuations in
the number of visitors within a window of time to the next (with the size of a specific window size shown
on the y-axis). As seen, even without going in more detail it is apparent that the coefficients appear to be
brighter during the three days of the festival (24-26 June) compared to the normal “rhythm” of the city. It is
also seen that outside the festival time, these fluctuations in all periods of different length have a repetitive
pattern.

What is shown above is an example of a general analysis but it is also interesting to know how these
changes appear at different locations. Each of the spaces covered by a scanner has general use cases during
normal days. During the festival time these use cases change. For instance, empty squares turn into stages
where music is played, parks turn into places where people camp, and new means of public transport are

Figure: [PCB+17]



Example: Two approaches for dealing with the same
problem

How do you find important periods from one person’s trajectory
data?

I Method 1: Time domain analysis

I Method 2: Frequency domain analysis



Method 1: Autocorrelation function

I Auto-correlation function (correlation of data with itself)

I The value of the autocorrelation function in (τ) can be
interpreted as the self-similarity score of a time series when
shifted (τ) timestamps

ACFτ = 1
T

∑t=T−τ(orT )
t=1

6(xt − x)(xt+τ − x)., τ = 0, 1, 2, ...,T 7

6T is used in circular autocorrelation
7max value of τ can be smaller



Circular autocorrelation function
For implementing circular autocorrelation we use a shift operation
from the end of time-series to its beginning
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Figure: Calculating autocorrelation in different lags



Finding periodicity using autocorrelation function

Once ACF is visualized in a graph, the peaks on the
autocorrelation graph can show the periods of repetitive behavior

    3 

3. Problem Definition

In this section, we clearly define the problem of finding periodic patterns from 
streaming mobility data. We first start by providing some definitions: 

Definition 1: A trajectory 𝐿1, 𝐿2, … is composed of a sequence of points denoted by 
𝐿𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖) where (𝑥𝑖 , 𝑦𝑖) represents a spatial coordinate and 𝑡𝑖  is a time-stamp. 

Definition 2: A period of length 𝑇 is a time frame composed of 𝑇 equally-sized 
segments denoted by 𝑠𝑒𝑔1..𝑇

𝑇 . 
Definition 3: A spatial neighborhood 𝑠𝑛(𝑥𝑖,𝑦𝑖) is a set of all points that fall within 

the radius 𝑟 of (𝑥𝑖 , 𝑦𝑖). 
Definition 4: A spatial neighborhood is visited periodically in a period 𝑇, if the 

probability of being in this neighborhood in a 𝑠𝑒𝑔𝑡𝑇of period 𝑇 is more than a 
threshold in all or a fraction  of observation time.  

Problem: Having memory of size 6𝑇𝑚𝑎𝑥 where 𝑇𝑚𝑎𝑥 is our guess about the 
maximum period followed in data, we are interested in the latest periodic pattern 
followed in data stream 𝐿1 … 𝐿𝑖   (𝑖 > 6𝑇𝑚𝑎𝑥) in form of <𝑇, [𝑆𝑁1𝑇 , … , 𝑆𝑁𝑇𝑇] > where 
𝑇 is a period and 𝑆𝑁𝑡𝑇 is either empty or it is a spatial neighborhood 𝑠𝑛(𝑥𝑗,𝑦𝑗) which is 
expected to be visited periodically in 𝑠𝑒𝑔𝑡𝑇 . 

4. Methodology

Our method to find periodic patterns from streaming mobility data is composed of 
three stages (shown in Fig.1): i) Measuring the self-similarity of the streaming data in 
different lags (described in section 4.1), ii) discovery of the periods of repetition from 
the self-similarity graph (described in section 4.2), and iii) extracting periodic patterns 
(described in section 4.3).  

UACF

Measuring the self-similarity 
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from the self-similarity graph
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Fig. 1. Our framework for finding periodic patterns from streaming mobility data. 

4.1 Measuring self-similarity of the mobility data in different lags 

Behavioral patterns can have different periodicities (e.g. daily, weekly, monthly, and 
yearly). Therefore, it is important to be able to identify the period of repetition of 
visits to a certain spatial neighborhood. One of the most commonly used methods1 for 
identifying these periods is the circular Auto-Correlation Function (ACF) [18]. ACF 
measures the similarity of a time-series to itself in different lags. ACF of a time 
series 𝑡𝑠, of size 𝑁 over lags 𝜏 ∈ {1. . .𝑁} is computed as follows: 
𝐴𝐶𝐹𝑁(𝜏) = ∑ 𝑡𝑠(𝑖). 𝑡𝑠(𝑖 + 𝜏)𝑁

𝑖=1           (1)  
Due to difficulties such as cloud cover, or device malfunction, GPS data is often 

1 Fourier transfrom is also used for period detection. However, this method has a low 
performance in identifying large periods [15]. 

Figure: Finding periodic patterns using autocorrelation function [BMH14]



Method 2: Periodogram

I A periodogram is used to identify the dominant periods (or
frequencies) of a time series.

I After performing Fourier transform the sum of squared
coefficinets in each period is used to create the periodogram



Periodogram
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Figure 4: Finding periods.

this, we use circular autocorrelation, which examines how
similar a sequence is to its previous values for different τ
lags: R(τ) =

Pn
i=1 bτ bi+τ .

Thus, for each period range [l, r) given by the periodogram,
we test whether there is a peak in {R(l), R(l +1), . . . , R(r−
1)} by fitting the data with a quadratic function. If the
resulting function is concave in the period range, which indi-
cates the existence of a peak, we return t∗ = arg maxl≤t<r R(t)
as a detected period. Similarly, we employ a 99% confidence
level to eliminate false positives caused by noise.

EXAMPLE 2 (Running Example (cont.)). The pe-
riodogram of reference spot #2 is shown in Figure 4(a).
The red dashed line denotes the threshold of 99% confidence.
There are two points P1 and P2 that are above the threshold.
In Figure 4(b), P1 and P2 are mapped to a range of periods.
We can see that there is only one peak, P1, corresponding
to T = 24 on the autocorrelation curve. This suggests the
existence of a period of 1 day in the movement data.

Discrete Fourier Transform can be executed in O(n log n)
time using Fast Fourier Transform algorithm (FFT). And
since autocorrelation is a formal convolution which can also
be solved by FFT, its complexity is also O(n log n). So, the
overall time complexity of detecting periods in sequence B
is O(n log n).

4. MINING PERIODIC BEHAVIORS
After obtaining the periods for each reference spot, now

we study the task how to mine periodic behaviors. We will
consider the reference spots with the same period together
in order to obtain more concise and informative periodic be-
haviors. But, since a behavior may only exist in a partial
movement, there could be several periodic behaviors with
the same period. For example, there are two daily behav-
iors in David’s movement. One corresponds to the school
days and the other one occurs during the summer. However,
given a long history of movement and a period as a “day”,
we actually do not know how many periodic behaviors exist
in this movement and which days belong to which periodic

behavior. This motivates us to use a clustering method. Be-
cause the “days” that belong to the same periodic behavior
should have the similar temporal location pattern. We pro-
pose a generative model to measure the distance between
two “days”. Armed with such distance measure, we can fur-
ther group the “days” into several clusters and each cluster
represents one periodic behavior. As in David’s example,
“school days” should be grouped into one cluster and “sum-
mer days” should be grouped into another one.

In this section, we will formally present the technique to
mine periodic behaviors. Since every period in the move-
ment will be considered separately, the rest of this section
will focus on one specific period T .

4.1 Modeling Periodic Behaviors
First, we retrieve all the reference spots with period T . By

combining the reference spots with the same period together,
we will get a more informative periodic behaviors associated
with different reference spots. For example, we can sum-
marize David’s daily behavior as “9:00∼18:00 at office and
20:00∼8:00 in the dorm”. We do not consider combining two
different periods in current work.

Let OT = {o1, o2, . . . , od} denote reference spots with pe-
riod T . For simplicity, we denote o0 as any other locations
outside the reference spots o1, o2, . . . , od. Given LOC =
loc1loc2 · · · locn, we generate the corresponding symbolized
movement sequence S = s1s2 . . . sn, where si = j if loci is
within oj . S is further segmented into m = ⌊ n

T
⌋ segments1.

We use Ij to denote the j-th segment and tk (1 ≤ k ≤ T )
to denote the k-th relative timestamp in a period. Ij

k = i
means that the object is within oi at tk in the j-th segment.
For example, for T = 24 (hours), a segment represents a
“day”, t9 denotes 9:00 in a day, and I5

9 = 2 means that the
object is within o2 at 9:00 in the 5-th day. Naturally, we may
use the categorical distribution to model the probability of
such events.

DEFINITION 2 (Categorical Distribution Matrix).
Let T = {t1, t2, . . . , tT } be a set of relative timestamps, xk

be the categorical random variable indicating the selection of
reference spot at timestamp tk. P = [p1, . . . ,pT ] is a cate-
gorical distribution matrix with each column pk = [p(xk =
0), p(xk = 1), . . . , p(xk = d)]T being an independent categor-

ical distribution vector satisfying
Pd

i=0 p(xk = i) = 1.

Now, suppose I1, I2, . . ., Il follow the same periodic be-
havior. The probability that the segment set I =

Sl
j=1 Ij is

generated by some distribution matrix P is

P (I|P) =
Y

Ij∈I

T
Y

k=1

p(xk = Ij
k).

According to maximum likelihood estimation (MLE), the
best generative model can be defined as the optimal solution
to the following log likelihood maximization problem:

max
P

n

L(P|I) = log P (I|P) =
X

Ij∈I

T
X

k=1

p(xk = Ij
k)

o

. (1)

The well-known solution to (1) is

p(xk = i) =

P

Ij∈I 1
I

j
k
=i

|I| , (2)

1If n is not a multiple of T , then the last (n mod T ) posi-
tions are truncated.

Figure: Periodogram

[LDH+10]



Why you need to know different methods

Each method has its pros and cons (typically, they complement
each other in some way)

I In practice, on real data both of them fail in someway

I Fourier transform often suffers from the low resolution
problem in the low frequency region, hence it provides poor
estimation of large periods. (this is referred to as the spectral
leakage problem)

I False positives can appear in periodogram that are caused by
noise

I Autocorrelation offers accurate estimation for both short and
large periods. However, It is more difficult to set the
significance threshold for finding important periods.



Many more different methods for representing time-series
data in alternative domains

[WMD+13]

I Discrete Cosine transform

I Discrete Fourier transform

I Discrete Wavelet transform

I Piecewise aggregate approximation

I Piecewise cloud approximation

I ...



What effects of time exist?

Some effects we would like to capture in a representation based on
the task we have in mind

I When things happen?

I How long do they last?

I How do they repeat?

I How do they follow each other?

I When things start to appear/disappear?

I When and how things change?



Part 2: Techniques for processing time-series data



Classical forecasting using time-series

Problem:
Given x1, x2, x3, .....xt forecast the value of xt+1, xt+2...xt+n

Forecast horizon depending on the value n:

I Short-term

I Medium-term

I Long-term



Autoregressive models

I Classical models widely used by statisticians

I The auto-regressive model specifies that the output variable
depends linearly on its own previous values and on a
stochastic term

I Assumption: Having a stationary process
I Time series is said to be strictly stationary if its properties are

not affected by a change in the time origin. OR Joint
probability distribution of xt , xt+1, ..., xt+n is equal to
xt+k , xt+k+1, ..., xt+k+n

I In a more strict sense, a stationary time series exhibits similar
statistical behavior in time and this is often characterized as a
constant probability distribution in time



Regression, Auto-regressive, Moving average

→ c is constant, φ is model parameter, ε is white noise
I Regression

I Yi = c + φXi + εi
I Autoregressive

I Xt = c +
∑p

i=1 φiXt−i + εt
I Moving average

I Xt = c +
∑q

i=1 φiεt−i

I Literally moving average, (i.e.) average value of previous
values of the time-series

I Auto-Regressive Moving Average (ARMA)
I Xt = c +

∑q
i=1 φiεt−i +

∑p
i=1 φiXt−i



Typical patterns in time-series that should be considered

How far can you go ahead in time:

I Seasonality (Periodicity)

I Trends

Figure: Time series with trend and periodicity [BJRL15]



Some other examples of time-series forecasting models
[MJK15]

I Autoregressive integrated moving average (ARIMA)

I Seasonal ARIMA (SARIMA)

I Fractional ARIMA (FARIMA)



Forecasting using frequency domain representation

I Transform the signal to the frequency domain (e.g. using
Fourier transform)

I Remove insignificant high-frequency components

I Forecast for each remaining component

I Transform the signal back to the time domain



Time-series classification

Problem: Assign class labels to xi ....xi+n

Figure: Classification of time-series data [LBKLT16]



Time-series classification

I Represent time-series in a suitable domain

I Select a similarity measure

I Classification method (K-nearest neighbor is very popular )

Representation and similarity measure go hand-in-hand and should
be matched!



Similarity measure

How to measure similarity of two time-series to each other?
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Euclidean distance
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Euclidean distance

Very similar time-series
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Euclidean distance

Very similar time-series (?)

!"
!# !$

!%
!& !'

("
(#

($

(&(% ('



What do we miss?

Euclidean distance:

I Sensitive to shifting, time or amplitude scaling



Dynamic time warping (DTW)

I DTW-algorithm is able to compare two curves in a way that
makes sense to human. It maintains the importance of spots
in curves that are important for humans when comparing
curves.

I Elastic similarity measure

I The most used measure of similarity between time-series

I Works by finding the optimal alignment between two
time-series

I Based on pair-wise distance matrix of time-series



DTW [CB17]
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DTW

Intuition: finding the best matching pair of points on two
time-series
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DTW
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y1 y2 y3 y4 y5 y6 y7 y8

x1 1 0 0 0 0 0 0 0
x2 0 1 0 0 0 0 0 0
x3 0 0 1 1 0 0 0 0
x4 0 0 0 1 1 0 0 0
x5 0 0 0 0 0 1 1 0
x6 0 0 0 0 0 0 0 1

The goal of DTW is finding the best alignment path



Pair-wise distance matrix

I The matrix can be initialized from data, through recursion we
find the optimal alignment

I ∆(i ,j) is |xi − yj |

∆(1,1) ∆(1,2) ∆(1,3) ∆(1,4) ∆(1,5) ∆(1,6) ∆(1,7) ∆(1,8)

∆(2,1) ∆(2,2) ∆(2,3) ∆(2,4) ∆(2,5) ∆(2,6) ∆(2,7) ∆(2,8)

∆(3,1) ∆(3,2) ∆(3,3) ∆(3,4) ∆(3,5) ∆(3,6) ∆(3,7) ∆(3,8)

∆(4,1) ∆(4,2) ∆(4,3) ∆(4,4) ∆(4,5) ∆(4,6) ∆(4,7) ∆(4,8)

∆(5,1) ∆(5,2) ∆(5,3) ∆(5,4) ∆(5,5) ∆(5,6) ∆(5,7) ∆(5,8)

∆(6,1) ∆(6,2) ∆(6,3) ∆(6,4) ∆(6,5) ∆(6,6) ∆(6,7) ∆(6,8)

dtw(i , j) =
∆i ,j + min(dtw(i − 1, j − 1), dtw(i − 1, j), dtw(i , j − 1))



A recursive process

Finding the best alignment path is achieved through recursion
using the pairwise distance matrix
dtw(i , j) =
∆i ,j + min(dtw(i − 1, j − 1), dtw(i − 1, j), dtw(i , j − 1))



Other similarity measures

I Least Common Subsequence (LCSS)

I Edit Distance on Real sequence (EDR)

I ...



Lessons learned

I Peculiarities of time-series data creates extra challenges in
designing algorithms for analysis of data (high-dimensionality,
non-stationary nature, noise, missing data)

I Extra effort is needed for using available algorithms on
time-series data

I Representing time-series data: time, frequency,
time-frequency,...

I A similar problem (extraction of periodic patterns) can be
addressed by two approaches, both might have difficulties on
real data

I Forecasting tasks: creating auto-regressive, moving average
models

I Classification tasks: defining robust similarity measures
combined with a representation



End of theory!



Part 3: Assignment
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