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Second Session: Urban Computing - Processing Time-series Data



Agenda for this session

» Part 1: Preliminaries on time-series data

» How does time-series data look like?
» How do we represent time-series data to algorithms?

» Part 2: Techniques for processing time-series data
» Forecasting
» Classification

> Part 3: Assignment

» Put into practice some of the techniques learned today
» Apply on Geo-life data



Part 1: Preliminaries on time-series data



Why do we care about time-series data

» Time-series data are ubiquitous...

» What types of data do we have in form of time-series for
Urban Computing research?
» Temperature
Humidity
Number of people, cars passing a road
Price of houses
Sensor measurements
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» What can you do with this data?

» How do you achieve that using an available machine learning
algorithm?

» How do we represent time-series data to available algorithms?



Peculiarities of time-series

Why analysis of time-series data is challenging? What qualities
should algorithms for analysis of time-series data have?



Dimensionality?

Temperature Leiden (Feb 2019)

Temperature (C)
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Figure: Temperature in Leiden during the month of February so far !

How many dimensions does the data have? Dimension is the
number of attributes required to explain every instance of data
Length over time defines the dimensions, — many (even infinite)

How would you use this data for predicting the temperature of the
following days?

1
data source: https://www.meteoblue.com



Peculiarities of time-series data

» High-dimensionality: We hope to reduce dimensionality by
finding a model Temp; = f(Temp(o. +—1))



Non-stationarity

» Non-stationarity: Data points have means, variances and
covariances that change over time

Global Average Temperature 1850 - 2019
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Land data prepared by Berkeley Earth and combined
with ocean data adapted from the UK Hadley Centre
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Figure: A non-stationary process 2
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image source:http://berkeleyearth.org/2019-temperatures/



Peculiarities of time-series

» High-dimensionality: One instance has a lot of attributes
Temp; = f( Temp(o...t—l))

> Non-stationarity: Data points have means, variances and
covariances that change over time (related to concept drift)

» Single versus multi-variate time-series: Multiple sensors at
the same time, multiple high-dimensional data

» Distortions in time-series data: Missing values, noises, etc.



Who has so far developed methods, algorithms for
working with such data?

» Signal processing experts

» Statisticians



What can we do with such data?

v

Predict values? (Better say forecast)

v

Classify

v

Find patterns, clusters, outliers
> Query

There are already algorithms designed for these tasks when dealing
with non-time-series data. The problem is finding a way to
represent time-series data to these algorithms.



Two approaches to deal with or represent time-series data

How do we represent time-series data in order to process it?
» Approach 1: Take it as it is.
» Represent it in time domain.

» Main issue: (Time-series data is high dimensional — very
difficult to work with)

» Approach 2: Represent it in a format that is more
understandable or easier to work with. Representation
techniques are designed to reduce the dimensionality of data
as much as possible.

» Frequency domain

» Time-frequency domain
>



Approach 2-example 1

Fourier transform
» What is Fourier transform?
» What does it do?
» Why is it useful (in math, in engineering, etc)?

» How can it be useful in Urban Computing?



What is Fourier transform?
The basic elements:
Fourier theory shows that all signals (periodic and non-periodic)
can be decomposed into a linear combination of sine waves defined
based on their amplitude (A), period (%’r) and phase (¢)
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Figure: A sine wave, basic element of Fourier transform
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Fourier transform in one image

g frequency
time

Figure: View of a signal in time and frequency domain3

3source: http://www.nti-audio.com/portals/0/pic/news/FFT-Time-Frequency-View-540.png



Why is it useful?
The main intuition:
If the frequency domain view is sparse, we can leverage the

sparsity in different ways. (e.g. create new features for
classification, compress the signal, ...)
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(Exactly sparse)  (Approximately sparse)

Figure: Different views of a signal and levels of sparsity. *

Question we should seek to answer before using a frequency
domain transformation:
Does a transformation give us a sparser, thus, more
understandable representation?

4
Source: https://groups.csail.mit.edu/netmit/sFFT /slidesEric.pdf



Why is it useful?

Intuition behind frequency

» Change, speed of change: If change has a repetitive pattern
we see it better in the frequency domain

» How can we use frequency analysis in urban computing?
» Typically any phenomenon with a periodic pattern can be
captured in the frequency domain

> Periodicity in trajectory data (daily, weekly, seasonal, yearly
patterns)

> Activities with periodic patterns from accelerometer data
(walking, running, biking)

» Forecasting

» Compressing data



Approach 2-example 2

Wavelet transform
» Fourier analysis tells you what frequency components are
strong in a signal, but not where in the signal (frequency view)

» Wavelet tells you what frequency components and also where
they happen in a signal (time + frequency view)

» Useful for multi-resolution analysis



Time, Frequency, Frequency-time domains

Jk time series ‘k Fourier transform JL wavelet transform
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» Lower frequency components take more time

» Higher frequency components take less time

5http://www.cerm.unifi.it/EUcourse2001/Guntherlecturenotes.pdf



Example case

Figure: Assen sensor setup

We collected WiFi data from a city during TT festival.

» What would you do to see what happened in the city during
the festival?

» How would you automate the process of detecting things that
changed during the festival?



Multi-resolution analysis using Wavelets

Multiresolution analysis on visits of people to TT festival.

When and how strongly the number of visitors changed?
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Example: Two approaches for dealing with the same
problem

How do you find important periods from one person’s trajectory
data?

» Method 1: Time domain analysis

» Method 2: Frequency domain analysis



Method 1: Autocorrelation function

» Auto-correlation function (correlation of data with itself)

» The value of the autocorrelation function in (7) can be
interpreted as the self-similarity score of a time series when
shifted (7) timestamps

ACF, = L =T 60 — %) (xer — %), 7 = 0,1,2,., T 7

5T is used in circular autocorrelation
"max value of 7 can be smaller



Circular autocorrelation function

For implementing circular autocorrelation we use a shift operation
from the end of time-series to its beginning
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Figure: Calculating autocorrelation in different lags



Finding periodicity using autocorrelation function

Once ACF is visualized in a graph, the peaks on the
autocorrelation graph can show the periods of repetitive behavior

Input stream Measuring the self-similarity  Discovery of the periods of repetition Extracting Periodic
over different lags from the self-similarity graph patterns
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Figure: Finding periodic patterns using autocorrelation function [BMH14]



Method 2: Periodogram

» A periodogram is used to identify the dominant periods (or
frequencies) of a time series.

> After performing Fourier transform the sum of squared
coefficinets in each period is used to create the periodogram



Periodogram
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Figure: Periodogram

[LDH*10]



Why you need to know different methods

Each method has its pros and cons (typically, they complement
each other in some way)

>

>

In practice, on real data both of them fail in someway

Fourier transform often suffers from the low resolution
problem in the low frequency region, hence it provides poor
estimation of large periods. (this is referred to as the spectral
leakage problem)

False positives can appear in periodogram that are caused by
noise

Autocorrelation offers accurate estimation for both short and
large periods. However, It is more difficult to set the
significance threshold for finding important periods.



Many more different methods for representing time-series
data in alternative domains

[WMD*13]

Discrete Cosine transform

v

Discrete Fourier transform

v

Discrete Wavelet transform

v

» Piecewise aggregate approximation

v

Piecewise cloud approximation



What effects of time exist?

Some effects we would like to capture in a representation based on
the task we have in mind

» When things happen?

v

How long do they last?

v

How do they repeat?

v

How do they follow each other?

v

When things start to appear/disappear?

v

When and how things change?



Part 2: Techniques for processing time-series data



Classical forecasting using time-series

Problem:
Given xi, X2, X3, .....x¢ forecast the value of x¢11, Xt42...Xe4n
Forecast horizon depending on the value n:

» Short-term

» Medium-term

» Long-term



Autoregressive models

» Classical models widely used by statisticians

» The auto-regressive model specifies that the output variable
depends linearly on its own previous values and on a
stochastic term

» Assumption: Having a stationary process

» Time series is said to be strictly stationary if its properties are
not affected by a change in the time origin. OR Joint
probability distribution of x;, X¢11, ..., X¢1, is equal to

Xtk Xttk+1y +++y Xt+k+n

> In a more strict sense, a stationary time series exhibits similar
statistical behavior in time and this is often characterized as a
constant probability distribution in time



Regression, Auto-regressive, Moving average

— c is constant, ¢ is model parameter, € is white noise
» Regression
> Yi=c+¢Xi+¢
> Autoregressive
» Xe=c+ Y0 diXemi+ e
» Moving average

_ g

» Xe=c+ Z,‘:l Di€r—j

» Literally moving average, (i.e.) average value of previous
values of the time-series

» Auto-Regressive Moving Average (ARMA)
» Xe=c+ Z?:l pier—i + Z?:l DiXe—i



Typical patterns in time-series that should be considered

How far can you go ahead in time:
» Seasonality (Periodicity)

» Trends
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Figure: Time series with trend and periodicity [BJRL15]



Some other examples of time-series forecasting models
[MJK15]

» Autoregressive integrated moving average (ARIMA)
» Seasonal ARIMA (SARIMA)
» Fractional ARIMA (FARIMA)



Forecasting using frequency domain representation

v

Transform the signal to the frequency domain (e.g. using
Fourier transform)

v

Remove insignificant high-frequency components

v

Forecast for each remaining component

v

Transform the signal back to the time domain



Time-series classification

Problem: Assign class labels to x;....Xj4+n

RPM, the best pattern for Class #1 RPM, the best pattern for Class #2

Figure: Classification of time-series data [LBKLT16]



Time-series classification

» Represent time-series in a suitable domain
> Select a similarity measure
» Classification method (K-nearest neighbor is very popular )

Representation and similarity measure go hand-in-hand and should
be matched!



Similarity measure

How to measure similarity of two time-series to each other?
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Euclidean distance




Euclidean distance

Very similar time-series




Euclidean distance

Very similar time-series (7)
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What do we miss?

Euclidean distance:

» Sensitive to shifting, time or amplitude scaling



Dynamic time warping (DTW)

» DTW-algorithm is able to compare two curves in a way that
makes sense to human. It maintains the importance of spots
in curves that are important for humans when comparing
curves.

» Elastic similarity measure

» The most used measure of similarity between time-series

» Works by finding the optimal alighnment between two
time-series

» Based on pair-wise distance matrix of time-series



DTW [CB17]

ys Yo Y7
X X; Y. .
! e %, A Aa
A
A ,
A A Xs
Y1 Vs X4 e



DTW

Intuition: finding the best matching pair of points on two
time-series




DTW
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The goal of DTW is finding the best alignment path



Pair-wise distance matrix

» The matrix can be initialized from data, through recursion we
find the optimal alignment

> A(iJ) is |X,'*yj|
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dtw(i,j) =
Ajj+ min(dtw(i — 1,j — 1), dtw(i — 1,j), dtw(i,j — 1))




A recursive process

Finding the best alignment path is achieved through recursion
using the pairwise distance matrix

dtw(i,j) =

Ajj+ min(dtw(i —1,j — 1), dtw(i — 1,j), dtw(i,j — 1))



Other similarity measures

» Least Common Subsequence (LCSS)
» Edit Distance on Real sequence (EDR)

> ..



Lessons learned

» Peculiarities of time-series data creates extra challenges in
designing algorithms for analysis of data (high-dimensionality,
non-stationary nature, noise, missing data)

» Extra effort is needed for using available algorithms on
time-series data
» Representing time-series data: time, frequency,
time-frequency,...
> A similar problem (extraction of periodic patterns) can be
addressed by two approaches, both might have difficulties on

real data
» Forecasting tasks: creating auto-regressive, moving average

models
» Classification tasks: defining robust similarity measures
combined with a representation



End of theory!



Part 3: Assignment
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